Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping.

نویسندگان

  • Stylianos Michalakis
  • Johannes Reisert
  • Heidi Geiger
  • Christian Wetzel
  • Xiangang Zong
  • Jonathan Bradley
  • Marc Spehr
  • Sabine Hüttl
  • Andrea Gerstner
  • Alexander Pfeifer
  • Hanns Hatt
  • King-Wai Yau
  • Martin Biel
چکیده

Olfactory receptor neurons (ORNs) employ a cyclic nucleotide-gated (CNG) channel to generate a receptor current in response to an odorant-induced rise in cAMP. This channel contains three types of subunits, the principal CNGA2 subunit and two modulatory subunits (CNGA4 and CNGB1b). Here, we have analyzed the functional relevance of CNGB1 for olfaction by gene targeting in mice. Electro-olfactogram responses of CNGB1-deficient (CNGB1-/-) mice displayed a reduced maximal amplitude and decelerated onset and recovery kinetics compared with wild-type mice. In a behavioral test, CNGB1-/- mice exhibited a profoundly decreased olfactory performance. Electrophysiological recordings revealed that ORNs of CNGB1-/- mice weakly expressed a CNG current with decreased cAMP sensitivity, very rapid flicker-gating behavior and no fast modulation by Ca2+-calmodulin. Co-immunoprecipitation confirmed the presence of a CNGA2/CNGA4 channel in the olfactory epithelium of CNGB1-/- mice. This CNGA2/CNGA4 channel was targeted to the plasma membrane of olfactory knobs, but failed to be trafficked into olfactory cilia. Interestingly, we observed a similar trafficking defect in mice deficient for the CNGA4 subunit. In conclusion, these results demonstrate that CNGB1 has a dual function in vivo. First, it endows the olfactory CNG channel with a variety of biophysical properties tailored to the specific requirements of olfactory transduction. Second, together with the CNGA4 subunit, CNGB1 is needed for ciliary targeting of the olfactory CNG channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological roles of cGMP-gated channels: lessons from mouse models and human channelopathies

Background Cyclic nucleotide-gated (CNG) channels are members of the superfamily of pore loop cation channels that are activated by the binding of cGMP or cAMP. The channels are important cellular switches which transduce changes in intracellular levels of cyclic nucleotides into changes of the membrane potential and the Ca2+ concentration. CNG channels play a central role in the signal transdu...

متن کامل

Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1.

Cyclic nucleotide-gated (CNG) channels are important mediators in the transduction pathways of rod and cone photoreceptors. Native CNG channels are heterotetramers composed of homologous A and B subunits. In heterologous expression systems, B subunits alone cannot form functional CNG channels, but they confer a number of channel properties when coexpressed with A subunits. To investigate the im...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Rod Cyclic Nucleotide-Gated Channels Have a Stoichiometry of Three CNGA1 Subunits and One CNGB1 Subunit

Phototransduction relies on the precise balance of speed and sensitivity to achieve optimal performance. The cyclic nucleotide-gated (CNG) ion channels, with their Ca(2+) permeability, high sensitivity to changes in cytosolic cGMP, rapid gating kinetics, and Ca(2+)-calmodulin modulation, are beautifully optimized for their role in light detection. Many of these specializations come about from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 46  شماره 

صفحات  -

تاریخ انتشار 2006